Time Integration in the XFEM

Thomas-Peter Fries, Andreas Zilian

www.xfem.rwth-aachen.de

July 02, 2008
Contents

- Model problem in 1d
- A review of space-time XFEM
- Proposal of time-stepping in the XFEM
- Extension to 2d
- Numerical results
- Summary and conclusions
Model problem

- Instationary diffusion equation in 1d:
 \[u,_{t} - k \cdot u,_{xx} = 0 \]

 with \[k = \begin{cases}
 k_1 & \text{for } x \leq x^*(t) \\
 k_2 & \text{for } x > x^*(t)
\end{cases} \]

- The discontinuity \(x^*(t) \) moves in time.

\[t = 1 \]

In space-time domain:
The exact solution has a kink at $x^*(t)$:
- The higher k_1/k_2, the stronger is the kink.
- The bigger $(x_B - x_A)$, the faster moves the discontinuity.
A review of space-time XFEM

- Discontinuous-Galerkin space-time XFEM used e.g. by [Chessa, IJNME, 2004], [Zilian, IJNME, 2008].

![Diagram showing space-time elements and weak form](image)

- Weak form for space-time:

\[
\int_{Q_n} w \ u_{,t} \ dQ + \int_{Q_n} k \cdot w_{,x} u_{,x} \ dQ + \int_{\Omega_n} w(t_n^+) [u(t_n^+) - u(t_n^-)] d\Omega = 0
\]
A review of space-time XFEM

- XFEM-approximation for $u(x, t)$:

$$u(x, t) = \sum N_i(x, t)u_i + \sum N_i(x, t)\Psi(x, t)a_i$$

- Note:
 - Enrichment is space-time dependent.
 - Cut space-time elements need special int.

- Properties of space-time XFEM:
 - Optimal convergence.
 - Rather time-consuming (number of DOFs is high, special integration in cut space-time elements).
Time-stepping in the XFEM

- Crank-Nicolson scheme: \(u_{t} = \frac{u^{n+1} - u^{n}}{\Delta t} \)

\[
u = \theta \cdot u^{n+1} + (1 - \theta) \cdot u^{n} \quad \text{with} \quad \theta = 0.5
\]

- Weak form for time-stepping:

\[
\frac{1}{\Delta t} \int w \, u^{n+1} - \frac{1}{\Delta t} \int w \, u^{n} + \theta \int k \, w_{,x} \, u^{n+1}_{,x} + (1 - \theta) \int k \, w_{,x} \, u^{n}_{,x} = 0
\]
Time-stepping in the XFEM

- XFEM-approximation (choice of shape functions):
 \[u^{n+1} = \sum N_i(x)u_i + \sum N_i(x)\Psi(x, t_{n+1})a_i \]
 \[u^n = \sum N_i(x)u_i + \sum N_i(x)\Psi(x, t_n)a_i \]
 Strd. FEM
 enrichment

- How to choose test functions \(w \)?
 [Chessa, IJNME, 2004: „Ambiguity in the choice of test functions“]
 \[w^{n+1} = [N_i, N_i\Psi(x, t_{n+1})] \] crucial for regularity
 \[w^\theta = [N_i, N_i\Psi(x, \theta \cdot t_{n+1} + (1 - \theta) \cdot t_n)] \]
 \[w^n = [N_i, N_i\Psi(x, t_n)] \]
Time-stepping in the XFEM

- "Mixed" terms appear, e.g.:

\[\frac{1}{\Delta t} \int_{\Omega} w^{n+1} \ u^n \ d\Omega \]

- \(w^{n+1}\) and \(u^n\) have inner-element kinks due to the enrichment.
 - The kink in \(w^{n+1}\) is based on \(x^*(t_{n+1})\).
 - The kink in \(u^n\) is based on \(x^*(t_n)\).
Time-stepping in the XFEM

- "Mixed" terms require new integration procedure in cut elements.
- Subdivide element w.r.t. to the discontinuities at t_{n+1} and t_n:

1 element subdivided into 3 sub-elements for integration

integration point
Time-stepping in the XFEM

Convergence study: Influence of k_1/k_2.

\[n \cdot k_1 = k_2 \]
Time-stepping in the XFEM

Convergence study: Influence of discontinuity speed $v^* = x^*_{,t}$.

$x^*(t) = x_A + t \cdot (x_B - x_A)$

$x_B = 1 - x_A$

$k_1 = 0.00025$, $k_2 = 0.00500$

$x_A = 0.2$

$x_A = 0.3$

$x_A = 0.4 - 10^{-6}$

$x_A = 0.45$
Extension to 2d

The same key ingredients:

- Test functions are chosen at \(t_{n+1} \).
- Subdivide element w.r.t. to the discontinuities at \(t_{n+1} \) and \(t_n \):

\[
\begin{align*}
&\text{integration point} \\
\end{align*}
\]
Numerical results: sloshing tank

\[y^* = 1.01 \]

\[\rho_1 = 1000 \]
\[\mu_1 = 1 \]

\[\rho_2 = 1 \]
\[\mu_2 = 0.1 \]

\[H = 1.5 \]

\[L = 1.0 \]
Numerical results: sloshing tank

Results are compared with standard FEM and interface-tracking: Excellent agreement.
Num. results: collapsing water column

\[\rho_2 = 1 \]
\[\mu_2 = 0.1 \]
\[\rho_1 = 1000 \]
\[\mu_1 = 1 \]
\[H = 0.45 \]
\[L = 0.584 \]
Num. results: collapsing water column
Numerical results: rising bubble

\[\rho_1 = 1 \]
\[\mu_1 = 0.01 \]

\[\rho_2 = 0.1 \]
\[\mu_2 = 0.01 \]

\[d = 0.1 \]

\[L = 0.2 \]

\[H = 0.4 \]
Numerical results: rising bubble

vorticity

pressure
Summary

- Proposal of time-stepping in the XFEM.
- Key ingredients:
 - Specification of the test function based on t_{n+1}.
 - Subdivision of elements w.r.t. the discontinuities at t_{n+1} and t_n.
- Properties:
 - Accuracy depends on the kink and the speed of the discontinuity.
 - 2nd order convergence rate.