The Extended Finite Element Method for Convection-Dominated Problems

Safdar Abbas & Thomas-Peter Fries

AICES, RWTH Aachen University, Aachen

GACM, September 21, 2009
Outline

Enrichment functions for convection dominated problems
 Motivation & formulation
 Enrichment functions

Optimal set of enrichment functions

Numerical results

Conclusions
Outline

Enrichment functions for convection dominated problems
 Motivation & formulation
 Enrichment functions

Optimal set of enrichment functions

Numerical results

Conclusions
Standard FEM (No Stabilization)
Standard FEM (No Stabilization)
Stabilized FEM (SUPG Stabilization)
Stabilized FEM (SUPG Stabilization)
XFEM Formulation

- Instead of stabilization and/or refinement we want to enrich the approximation space.
Enrichment functions for convection dominated problems

Enrichment functions

XFEM Formulation

- Instead of stabilization and/or refinement we want to enrich the approximation space.
- XFEM approximation.
Enrichment functions for convection dominated problems

XFEM Formulation

- Instead of stabilization and/or refinement we want to enrich the approximation space.
- XFEM approximation.
 - Standard finite element approximation.

\[
u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{j=1}^{\xi} \sum_{i \in I^\ast} N_{i^\ast}(x) \psi_j(x) a_{ij},\]

6 / 29
Enrichment functions for convection dominated problems

Enrichment functions

XFEM Formulation

- Instead of stabilization and/or refinement we want to enrich the approximation space.
- XFEM approximation.
 - Standard finite element approximation.
 - Enrichment.

\[
 u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{i \in I^*} N_i^*(x) \cdot \psi(x) a_i ,
\]
XFEM Formulation

- Instead of stabilization and/or refinement we want to enrich the approximation space.
- XFEM approximation.
 - Standard finite element approximation.
 - Enrichment.

\[u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{j=1} \sum_{i \in I^*} N_i^*(x) \cdot \psi^j(x) a_{ij}, \]
Enrichment functions for convection dominated problems

Enrichment functions

XFEM Formulation

\[u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{j=1}^{\sum_{i \in I^*}} N_i^*(x) \cdot \psi^j(x) a^j_i, \]
Enrichment functions for convection dominated problems

XFEM Formulation

\[u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{j=1} \sum_{i \in I^*} N_i^*(x) \cdot \psi^j(x) a_i^j, \]

- Set of nodes whose support is cut by the interface.
Enrichment functions for convection dominated problems

XFEM Formulation

\[u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{j=1}^{\sum_{i \in I^*}} N_i^*(x) \cdot \psi_j(x) a_i^j, \]

- Set of nodes whose support is cut by the interface.
XFEM Formulation

\[u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{j=1} \sum_{i \in I^*} N_i^*(x) \cdot \psi^j(x) a^j_i, \]

- Set of nodes whose support is cut by the interface.
- Partition-of-unity functions, usually but not necessarily, the same as \(N_i \).
XFEM Formulation

\[u^h(x) = \sum_{i \in I} N_i(x) u_i + \sum_{j=1} \sum_{i \in I^*} N_i^*(x) \cdot \psi^j(x) a^j_i, \]

- Set of nodes whose support is cut by the interface.
- Partition-of-unity functions, usually but not necessarily, the same as \(N_i \).
- Enrichment function.
XFEM Formulation

\[u^h(x) = \sum_{i \in I} N_i(x)u_i + \sum_{j=1} \sum_{i \in I^*} N_i^*(x) \cdot \psi^j(x)a^j_i, \]

- Set of nodes whose support is cut by the interface.
- Partition-of-unity functions, usually but not necessarily, the same as \(N_i \).
- Enrichment function.
- Additional degrees of freedom.
• Enrichment Functions
Enrichment functions for convection dominated problems

Enrichment functions

- Enrichment Functions
 - Weak discontinuity \rightarrow Abs-Enrichment
Enrichment functions for convection dominated problems

- Enrichment Functions
 - Weak discontinuity \rightarrow Abs-Enrichment
 - Strong discontinuity \rightarrow Sign/Heaviside-Enrichment
• High gradient enrichment function [Patzák & Jirásek, 2003].

\[
\psi(\phi, \epsilon) = \begin{cases}
0, & \text{if } \phi < -\epsilon, \\
\frac{315}{256\epsilon} \int_{-\epsilon}^{\phi} \left(1 - \frac{\xi^2}{\epsilon^2}\right)^4 d\xi, & \text{if } |\phi| \leq \epsilon, \\
1, & \text{if } \phi > \epsilon.
\end{cases}
\]
Outline

Enrichment functions for convection dominated problems
Motivation & formulation
Enrichment functions

Optimal set of enrichment functions

Numerical results

Conclusions
Optimal set of enrichment functions

Interpolation problem

\[
\text{Interpolated function } f,
\]

\[
\text{Interpolation functions } \Psi = [\psi_1, \psi_2, \psi_3],
\]

Find

\[
\int_\omega u_h = \int_\omega f,
\]

for \(\omega \in \Psi\),

where \(u_h = \sum \psi_i u_i = \Psi^T u\).
Optimal set of enrichment functions

Interpolation problem

- Interpolated function f.
Interpolation problem

- Interpolated function f.
- Interpolation functions $\Psi = [\psi_1, \psi_2, \psi_3]$.
Interpolation problem

- Interpolated function f.
- Interpolation functions $\Psi = [\psi_1, \psi_2, \psi_3]$.
- Find $\int \omega u^h = \int \omega f$, for $\omega \in \Psi$, where $u^h = \sum \psi_i u_i = \Psi^T u$.
Interpolation problem

- Interpolated function \(f \).
- Interpolation functions \(\Psi = [\psi_1, \psi_2, \psi_3] \).
- Find \(\int \omega u^h = \int \omega f, \) for \(\omega \in \Psi \),
 where \(u^h = \sum \psi_i u_i = \Psi^T u \).
The optimal set

- Optimal set of seven enrichment functions.
- Enrichment functions are relative to the element size.
The optimal set

- Optimal set of seven enrichment functions.
- Enrichment functions are relative to the element size.
Outline

Enrichment functions for convection dominated problems
Motivation & formulation
Enrichment functions

Optimal set of enrichment functions

Numerical results

Conclusions
In-stationary Burgers Equation

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2}, \quad \text{in } \Omega \times [0, T[, \]

\[u(x, 0) = u_0(x), \quad \forall x \in \Omega \]

\[u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times [0, T[, \]

\[\Omega =]0, 1[\quad \text{and } \quad T = 1, \]

\[u_0(x) = \sin 2\pi(x) \quad \text{and} \quad \hat{u}(x, t) = 0 \]
In-stationary Burgers Equation

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2}, \quad \text{in } \Omega \times]0, T[, \]

\[u(x, 0) = u_0(x), \quad \forall x \in \Omega \]

\[u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times]0, T[, \]

\[\Omega =]0, 1[\text{ and } T = 1, \]

\[u_0(x) = \sin 2\pi(x) \text{ and } \hat{u}(x, t) = 0 \]

- Time-Stepping for the temporal discretization.
In-stationary Burgers Equation

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2}, \quad \text{in} \quad \Omega \times]0, T[, \]

\[u(x, 0) = u_0(x), \quad \forall x \in \Omega \]

\[u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times]0, T[, \]

\[\Omega =]0, 1[\text{ and } T = 1, \]

\[u_0(x) = \sin 2\pi(x) \text{ and } \hat{u}(x, t) = 0 \]

- Time-Stepping for the temporal discretization.
- Non-linear term is linearized using Newton-Raphson iterations.
In-stationary Burgers Equation

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2}, \quad \text{in} \quad \Omega \times]0, T[, \]

\[u(x, 0) = u_0(x), \quad \forall x \in \Omega \]

\[u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times]0, T[, \]

\[\Omega =]0, 1[\quad \text{and} \quad T = 1, \]

\[u_0(x) = \sin 2\pi(x) \quad \text{and} \quad \hat{u}(x, t) = 0 \]

- Time-Stepping for the temporal discretization.
- Non-linear term is linearized using Newton-Raphson iterations.
- Diffusion coefficient is very small.
In-stationary Burgers Equation

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2}, \quad \text{in} \quad \Omega \times]0, T[, \]

\[u(x, 0) = u_0(x), \quad \forall x \in \Omega \]

\[u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times]0, T[, \]

\[\Omega =]0, 1[\quad \text{and} \quad T = 1, \]

\[u_0(x) = \sin 2\pi(x) \quad \text{and} \quad \hat{u}(x, t) = 0 \]

- Time-Stepping for the temporal discretization.
- Non-linear term is linearized using Newton-Raphson iterations.
- Diffusion coefficient is very small.
- No stabilization is used.
In-stationary Burgers Equation

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2}, \text{ in } \Omega \times [0, T], \]

\[u(x, 0) = u_0(x), \quad \forall x \in \Omega \]

\[u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times [0, T], \]

\[\Omega = [0, 1] \text{ and } T = 1, \]

\[u_0(x) = \sin 2\pi(x) \text{ and } \hat{u}(x, t) = 0 \]

- Time-Stepping for the temporal discretization.
- Non-linear term is linearized using Newton-Raphson iterations.
- Diffusion coefficient is very small.
- No stabilization is used.
- Position of the highest gradient is known and stationary.
XFEM (No Stabilization)
XFEM (No Stabilization)
Convergence of L2 Norm for the diffusion coefficient = 1.25000e−03
Linear advection-diffusion equation
\[
\dot{u}(x, t) = -c \cdot \nabla u + \kappa \cdot \Delta u, \quad \text{in } \Omega \times]0, T[, \\
u(x, 0) = u_0(x), \quad \forall x \in \Omega \\
u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times]0, T[, \\
\Omega =]0, 1[, \quad c = 5, \quad \kappa = 10^{-6}, \quad T = 0.055
\]
Numerical results

Linear advection-diffusion equation

\[
\dot{u}(x, t) = -c \cdot \nabla u + \kappa \cdot \Delta u, \quad \text{in } \Omega \times [0, T[,
\]

\[
u(x, 0) = u_0(x), \quad \forall x \in \Omega
\]

\[
u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times [0, T[,
\]

\[
\Omega = [0, 1[, \quad c = 5, \quad \kappa = 10^{-6}, \quad T = 0.055
\]

- Time stepping is not fully appropriate.
Numerical results

Linear advection-diffusion equation
\[
\dot{u}(x, t) = -c \cdot \nabla u + \kappa \cdot \Delta u, \quad \text{in } \Omega \times]0, T[,
\]
\[
u(x, 0) = u_0(x), \quad \forall x \in \Omega
\]
\[
u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times]0, T[,
\]
\[
\Omega =]0, 1[, \quad c = 5, \quad \kappa = 10^{-6}, \quad T = 0.055
\]

- Time stepping is not fully appropriate.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
Linear advection-diffusion equation

\[
\dot{u}(x, t) = -c \cdot \nabla u + \kappa \cdot \Delta u, \quad \text{in } \Omega \times]0, T[,
\]

\[
u(x, 0) = u_0(x), \quad \forall x \in \Omega
\]

\[
u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times]0, T[,
\]

\[
\Omega =]0, 1[, \quad c = 5, \quad \kappa = 10^{-6}, \quad T = 0.055
\]

- Time stepping is not fully appropriate.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
- A high-gradient function (shock) is specified as the initial condition.
Linear advection-diffusion equation

\[
\begin{align*}
\dot{u}(x, t) & = -c \cdot \nabla u + \kappa \cdot \Delta u, \quad \text{in } \Omega \times [0, T], \\
u(x, 0) & = u_0(x), \quad \forall x \in \Omega \\
u(x, t) & = \hat{u}(x, t), \quad \forall x \in \Gamma \times [0, T], \\
\Omega & = [0, 1[, \quad c = 5, \quad \kappa = 10^{-6}, \quad T = 0.055
\end{align*}
\]

- Time stepping is not fully appropriate.
- Equation is discretized using Space–Time discretization with Discontinuous-Galerkin in time.
- A high-gradient function (shock) is specified as the initial condition.
- No stabilization is used.
Linear advection-diffusion equation

\[
\dot{u}(x, t) = -c \cdot \nabla u + \kappa \cdot \Delta u, \quad \text{in} \quad \Omega \times [0, T],
\]

\[
u(x, 0) = u_0(x), \quad \forall x \in \Omega
\]

\[
u(x, t) = \hat{u}(x, t), \quad \forall x \in \Gamma \times [0, T],
\]

\[
\Omega = [0, 1[, \quad c = 5, \quad \kappa = 10^{-6}, \quad T = 0.055
\]

- Time stepping is not fully appropriate.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
- A high-gradient function (shock) is specified as the initial condition.
- No stabilization is used.
- Position of the highest gradient known a priori at each time (linear transport).
XFEM (No Stabilization)
Numerical results

XFEM (No Stabilization)
Non-linear transport

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2} \]

\[\dot{\phi}(x, t) = -u \cdot \nabla \phi \]
Non-linear transport

\[
\begin{align*}
\dot{u}(x, t) & = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2} \\
\phi(x, t) & = -u \cdot \nabla \phi
\end{align*}
\]

- Level-set function is transported using transport equation for the level-set.
Non-linear transport

\[
\begin{align*}
\dot{u}(x, t) & = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2} \\
\dot{\phi}(x, t) & = -u \cdot \nabla \phi
\end{align*}
\]

- Level-set function is transported using transport equation for the level-set.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
Non-linear transport

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2} \]
\[\dot{\phi}(x, t) = -u \cdot \nabla \phi \]

- Level-set function is transported using transport equation for the level-set.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
- Non-linear term is linearized using Newton-Raphson iterations.
Non-linear transport

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2} \]

\[\dot{\phi}(x, t) = -u \cdot \nabla \phi \]

- Level-set function is transported using transport equation for the level-set.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
- Non-linear term is linearized using Newton-Raphson iterations.
- Diffusion coefficient is very small.
Non-linear transport

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2} \]

\[\dot{\phi}(x, t) = -u \cdot \nabla \phi \]

- Level-set function is transported using transport equation for the level-set.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
- Non-linear term is linearized using Newton-Raphson iterations.
- Diffusion coefficient is very small.
- No stabilization is used.
Non-linear transport

\[\dot{u}(x, t) = -u \cdot \frac{\partial u}{\partial x} + \kappa \cdot \frac{\partial^2 u}{\partial x^2} \]

\[\dot{\phi}(x, t) = -u \cdot \nabla \phi \]

- Level-set function is transported using transport equation for the level-set.
- Equation is discretized using Space-Time discretization with Discontinuous-Galerkin in time.
- Non-linear term is linearized using Newton-Raphson iterations.
- Diffusion coefficient is very small.
- No stabilization is used.
- Position of the highest gradient in each time step is found iteratively by a strong coupling loop (non-linear transport).
Strong coupling loop

Solution of Burgers equation

Solution of transport equation

t^n

Solution of Burgers equation

Solution of transport equation

t^{n+1}
Non-linear transport (space-time view)
Standard FEM (No Stabilization)
Standard FEM (No Stabilization)
Numerical results

XFEM (No Stabilization)
XFEM (No Stabilization)
Transport of a 2D high gradient scalar function
Numerical results

XFEM (No Stabilization)
XFEM (No Stabilization)
Outline

Enrichment functions for convection dominated problems
Motivation & formulation
Enrichment functions

Optimal set of enrichment functions

Numerical results

Conclusions
Conclusions

• A complete range of gradients is captured using an optimal set of high gradient enrichment functions.
• No oscillations are observed near the high gradient.
• Solution quality is better than that achieved from stabilization without refining the mesh.
Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 and the Emmy-Noether program is gratefully acknowledged.
Thanks for your attention