The XFEM using Crack Tip Enrichment with Large Support for Curved Cracks

Malak Baydoun and Thomas Peter Fries

AACHEN INSTITUTE FOR ADVANCED STUDY IN COMPUTATIONAL ENGINEERING SCIENCE

DFG Deutsche Forschungsgemeinschaft

ECCM 2010, Paris
Outline

1. Motivation
2. New Alternative
3. Other Alternatives
4. Studies
5. Conclusions
eXtended Finite Element Formulation

\[u(x, y) = \sum_{i \in I} N_i(x, y)u_i + \sum_{j \in I^1} N_j^+(x, y) \cdot H(x, y)a_j + \sum_{k \in I^2} N_k^+(x, y) \cdot \left(\sum_{m=1}^{4} B^m b_k^m \right) \]

Continuous

Discontinuous
eXtended Finite Element Formulation

\[u(x, y) = \sum_{i \in I} N_i(x, y) u_i + \sum_{j \in I^+} N_j^+(x, y) \cdot H(x, y) a_j + \sum_{k \in I^+} N_k^+(x, y) \cdot \left(\sum_{m=1}^{4} B^m b_k^m \right) \]

Continuous

Discontinuous

\[
\Gamma
\]

\[
\Gamma
\]
In XFEM, Optimal Convergence Rates with Fixed Radius for Branch Enrichments are achieved. [LABORDE ET AL.]
Coordinate Systems

For Curved Cracks/Crack Propagation, Different Coordinate Systems to evaluate the SIFs and/or Enrichments exist:

Alternative 0

- Easy to evaluate by Crack Tip Information only.
- Discontinuity follows a Straight Path.
- Not Suitable for “Large” Radius Enrichment.
Coordinate Systems

For Curved Cracks/Crack Propagation, Different Coordinate Systems to evaluate the SIFs and/or Enrichments exist:

Alternative 0
- Easy to evaluate by Crack Tip Information only.
- Discontinuity follows a Straight Path.
- Not Suitable for “Large” Radius Enrichment.

Alternative 1
- Discontinuity follows Curved Path.
- Bases e_1 and e_2.
- Drawbacks.
Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.

- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.
- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.

- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Motivation

New Alternative

Other Alternatives

Studies
Signed Distance
Derivatives of Level Sets
Radius Enrichment
Stress Intensity Factors

Conclusions

Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.

- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.

- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.

- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.

- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Drawbacks of Alternative 1

- Two Level Set Functions: ϕ and γ.
- $\forall p \in \Omega$: Two Signed Values and Bases.

- Bases are no longer Orthogonal.
- Inconvenient values away from the Tip.
Alternative 2

- Geometrical Reconstruction.
- Split the Domain into Triangles.
Alternative 2

- Geometrical Reconstruction.
- Split the Domain into Triangles.
Alternative 2

- Geometrical Reconstruction.
- Split the Domain into Triangles.
Alternative 2

- Geometrical Reconstruction.
- Split the Domain into Triangles.
Alternative 2

- Geometrical Reconstruction.
- Split the Domain into Triangles.
Alternative 2

- $\forall p \in$ Triangle.
- Interpolate Limiter Level Sets γ.
- Interpolate Signed Distance for point p.
- Find Signed Distance ϕ.

![Diagram showing level sets and signed distances](image-url)
Alternative 2

- $\forall p \in \text{Triangle}$.
- Interpolate Limiter Level Sets γ.
- Interpolate Signed Distance for point p.
- Find Signed Distance ϕ.
Alternative 2

- $\forall p \in \text{Triangle}$.
- Interpolate Limiter Level Sets γ.
- Interpolate Signed Distance for point p.
- Find Signed Distance ϕ.
Alternative 2

- $\forall p \in \text{Triangle}$.
- Interpolate Limiter Level Sets γ.
- Interpolate Signed Distance for point p.
- Find Signed Distance ϕ.

$\gamma = -da$
$\gamma = 7da/8$
$\gamma = -6da/8$
$\gamma = -5da/8$
$\gamma = -da/2$
$\gamma = -3da/8$
$\gamma = -da/4$
$\gamma = -da/8$
$\gamma = 0$
Alternative 2

- \(\forall p \in \text{Triangle}. \)
- Interpolate Limiter Level Sets \(\gamma \).
- Interpolate Signed Distance for point \(p \).
- Find Signed Distance \(\phi \).
Alternative 2

- $\forall p \in \text{Triangle}$.
- Interpolate Limiter Level Sets γ.
- Interpolate Signed Distance for point p.
- Find Signed Distance ϕ.

\[
\begin{align*}
\gamma &= \text{da} \\
\gamma &= 7\text{da}/8 \\
\gamma &= -6\text{da}/8 \\
\gamma &= 5\text{da}/8 \\
\gamma &= -\text{da}/2 \\
\gamma &= -3\text{da}/8 \\
\gamma &= -\text{da}/4 \\
\gamma &= -\text{da}/8 \\
\gamma &= 0
\end{align*}
\]

\[
\begin{align*}
\Phi &= 0 \\
\Phi &= 3
\end{align*}
\]
Alternative 2

- Convenient Values γ.
- Bases are almost Orthogonal.
Alternative 2

- Convenient Values γ.
- Bases are almost Orthogonal.
Alternative 2

- Convenient Values γ.
- Bases are almost Orthogonal.
Alternative 2

- Convenient Values γ.
- Bases are almost Orthogonal.
Alternative 2

- Convenient Values γ.
- Bases are almost Orthogonal.
Alternative 2

- Convenient Values γ.
- Bases are almost Orthogonal.

\[\Phi = 2.7, \quad \gamma = -2.65 \text{da}\]
Other Alternatives

Alternative 2– a

- Applicable if Radius includes more than One Increment.
Other Alternatives

Alternative 2– a

- Applicable if Radius includes more than one increment.

Alternative 2– b

- Fits straight cracks and small angle increments: Quadrilateral.
Other Alternatives

Alternative 2– a
- Applicable if Radius includes more than One Increment.

Alternative 2– b
- Fits Straight Cracks and Small Angle Increments: Quadrilateral.
Other Alternatives

Alternative 2– a
- Applicable if Radius includes more than one increment.

Alternative 2– b
- Fits straight cracks and small angle increments: Quadrilateral.
Other Alternatives

Alternative 2– a
- Applicable if Radius includes more than One Increment.

Alternative 2– b
- Fits Straight Cracks and Small Angle Increments: Quadrilateral.
Other Alternatives

Alternative 2– a
- Applicable if Radius includes more than One Increment.

Alternative 2– b
- Fits Straight Cracks and Small Angle Increments: Quadrilateral.

Alternative 2– c
- Mid Angle of Orthogonal Limiter Level Sets.
Other Alternatives

Alternative 2– a
- Applicable if Radius includes more than One Increment.

Alternative 2– b
- Fits Straight Cracks and Small Angle Increments: Quadrilateral.

Alternative 2– c
- Mid Angle of Orthogonal Limiter Level Sets.
Signed Distance

Alternative 1

- Signed Distance is Tangent to the Crack at the Tip.
Signed Distance

Alternative 1
- Signed Distance is Tangent to the Crack at the Tip.

Alternative 2–b
- Signed Distance is Tangent to the Crack Path.
Signed Distance

Alternative 1
- Signed Distance is Tangent to the Crack at the Tip.

Alternative 2–b
- Signed Distance is Tangent to the Crack Path.
Derivatives of Level Sets

Derivatives of Level Sets at the Integration points are Required.

- **Option 1:**
 1. Find the Signed Distance at the Integration Points.
 2. Not easy to evaluate the Derivatives.

- **Option 2:**
 1. Find the Signed Distance at the Nodes.
 2. Evaluate the Derivatives by using the Shape Functions.

- Comparing both Options for $\nabla_x \phi$:
Derivatives of Level Sets

Derivatives of Level Sets at the Integration points are Required.

- **Option 1:**
 1. Find the Signed Distance at the Integration Points.
 2. Not easy to evaluate the Derivatives.

- **Option 2:**
 1. Find the Signed Distance at the Nodes.
 2. Evaluate the Derivatives by using the Shape Functions.

- Comparing both Options for $\nabla_x \phi$:
Derivatives of Level Sets at the Integration points are Required.

- **Option 1:**
 1. Find the Signed Distance at the Integration Points.
 2. Not easy to evaluate the Derivatives.

- **Option 2:**
 1. Find the Signed Distance at the Nodes.
 2. Evaluate the Derivatives by using the Shape Functions.

- Comparing both Options for \(\nabla_x \phi \):
Alternative 0

- Enrichment does not conform to the Discontinuity.
Alternative 0

- Enrichment does not conform to the Discontinuity.

Alternative 1

- Enrichment conforms to the Discontinuity under some Restrictions away from the Tip.
Radius Enrichment

Alternative 0
- Enrichment does not conform to the Discontinuity.

Alternative 1
- Enrichment conforms to the Discontinuity under some Restrictions away from the Tip.

Alternative 2–b
- Enrichment conforms to the Discontinuity.
Stress Intensity Factors

- Inclined Center Crack: $\beta = 40^\circ$.

- SIFs Match.
Stress Intensity Factors

- Inclined Center Crack: $\beta = 40^\circ$.

![Diagram showing crack and stress intensity factors](image)

- SIFs Match.

![Graph showing stress intensity factor K_I](image)
Stress Intensity Factors

- Curved Center Crack: $\beta = 30^\circ$

- SIFs Convergence.
Stress Intensity Factors

- Curved Center Crack: $\beta = 30^\circ$

- SIFs Convergence.
Conclusions

- New Bases System \((\phi, \gamma)\): Triangles and a Quadrilateral.
- Improved Definition of \(\gamma\).
- Improved Stress Intensity Factors Convergence Rates.
- Improved Evaluation of Enrichment Functions.
- Flexibility and Multiplicity of Alternatives.
THANK YOU FOR YOUR ATTENTION!