Material forces for 3D crack propagation in XFEM

M. Baydoun & T. P. Fries
CFRAC-2011
8th June
Outline

I. Traditional crack propagation in XFEM.
II. Hybrid explicit implicit crack description.
III. Material forces as propagation criteria in FEM.
IV. Material forces as propagation criteria in XFEM.
V. Numerical results.
VI. Conclusions and outlook.
Traditional Crack Propagation in XFEM

\[u(x) = \sum_{i \in I} N_i(x)u_i + \sum_{j \in I^{cut}} N_j^*(x) \cdot S(x)a_j + \sum_{k \in I^{branch}} N_k^*(x) \cdot \left(\sum_{m=1}^{4} B^m b_k^m \right) \]

- **Crack description**: level set functions.
- **Stress Intensity Factors’ evaluation**: propagation angle is determined.
- **Crack growth**: transporting LSFs.
Hybrid explicit-implicit crack description

Explicit

Geometric Crack

Implicit

Nodes for enrichment

Polar coordinates + Integration

A coordinate system \((da, db, dc)\) is set at every node
Propagation in Explicit-Implicit XFEM

1. A coordinate system is defined at each tip.

2. Crack increments are imposed at the old tips.

3. The band in between old & new tips is meshed then merged to the old mesh.
Material Forces

- Global dissipation is positive

\[D = -\int_{\Omega} \sigma : \nabla \dot{u} \, dV - \int_{\Omega} (W \cdot I - (\nabla^T u)\sigma) : \nabla \dot{a} \, dV \geq 0 \]

- A duality between the stress driving the change in the displacement and a stress like quantity driving the crack evolution \(\dot{a} \).

- This stress like tensor is the \textbf{Eshelby} tensor or the material stress tensor as it drives the increment of the crack.

\[\Sigma = W \cdot I - (\nabla^T u)\sigma \]
Material Forces- FEM

• In a \textit{Finite Element} setting, \(\delta u = \sum_I N^I \delta u^I \) define the displacement fields and \(\delta a = \sum_I N^I \delta a^I \) the increments caused by the material forces within the domain \(V \).

\[
- \sum_i \delta u^I \int_V (\sigma_{ij} N^I_{,j}) dV = 0; \\
- \sum_i \delta a^I \int_V (\Sigma_{ij} N^I_{,j}) dV = 0.
\]

Governing Equations

• The nodal material force \(F^I_e \) for an element \((e) \) is evaluated by numerical integration over the element volume \(V^e \).

\[
F^I_e = -\int_{V^e} (\Sigma_{ij} N^I_{,j}) dV^e
\]
Material Forces- FEM

• The resulting total material force at a node I is the sum of all nodal forces from surrounding elements.

$$F^I = \sum_{e=1}^{n_e} F^I_e$$

In the FEM, the greatest nodal material force is spotted at the crack tip node.
Material Forces- XFEM

• In the XFEM, material forces face that the crack tip does not coincide with a node but there exist distributed material forces on the nodes around the crack tip.

• A vector material force F_{tip} is evaluated by summing the nodal forces within a domain G surrounding the tip.

\[F_{\text{tip}} = \sum_{\text{nodes} \subset G} F^k \]
Material Forces- XFEM- 2D

• In 2D, the domain G follows a contour approach or domain approach.

- Contour approach.
- Domain approach.

Both approaches render similar tip force
Material Forces- XFEM- 3D

- The domain G with a radius R_G and width W_G:

1. For a frontal point with coordinates $\{x_{tip}, y_{tip}, z_{tip}\}$, the set of elements inside a tube are assigned whereby their nodes satisfy:

$$I_{tube} \subset \{r - R_G \leq 0\}$$
2. From the coordinate system \((da, db, dc)\) at each node, the tangent values with respect to coordinates \((x, y, z)\) of nodes \(I_{tube}\) are evaluated

\[
dc_x = (\nabla_x c).(x - x_{tip}),
\]
\[
dc_y = (\nabla_y c).(y - y_{tip}),
\]
\[
dc_z = (\nabla_z c).(z - z_{tip}).
\]

The magnitude \(C_G = \sqrt{dc_x^2 + dc_y^2 + dc_z^2}\) is then defined. The elements that denote the material forces' domain \(G\) have the nodes satisfying:

\[
I^G \subset \{C_G - w_G \leq 0\}
\]
Parameters & limitations

- Larger R_G renders better results to a certain limit!

- \mathcal{W}_G extends to the whole crack front.

- Varying \mathcal{W}_G at every individual point.

- Equal \mathcal{W}_G for every individual point.
Parameters & limitations

- Mesh dependency

8/6/2011
M.Baydoun & T.P.Fries: Configurational forces in 3D XFEM
Material Forces based Propagation

- In 3D, to account for varying increments at the front of the geometric crack, the increment evolution in a discrete setting $\dot{a} = \Delta a$ at a frontal point "i" is related to the prescribed increment V by:

$$\Delta a_i = V \cdot \vec{n}_i$$

with

$$\vec{n}_i = \frac{F_i}{\max \{|| F_1 ||, ..., || F_{ntips} ||\}}$$

- In 2D, the crack increment is now reduced to:

$$\Delta a_{tip} = V \cdot \vec{n}_{tip}$$
Numerical Results

• Asymmetric bending test: \(n^0 \text{Elements} = 3527; \)
 \[V = 7; \quad k = 0; \]
 \[w_G = 5; \quad R_G = 11; \]
Numerical Results

- Asymmetric bending test: \(n^0 \text{Elements} = 3527; \)
 \[
 V = 7; \quad k = \infty; \\
 w_G = 5; \quad R_G = 13;
 \]
Numerical Results

- Torsion test case: \(\text{n}^\circ \text{Elements} = 2351; V = 5; \)
 \(w_G = 7; \quad R_G = 13; \)
Numerical Results

• Domain approach & averaging
Conclusions

• **Material forces** as geometric propagation criteria in 3D XFEM.
• Effects of the width \mathcal{W}_G and radius R_G of the domain.
• Having an equal domain is very hard: Averaging is required.
• Limited dependency on the mesh size.
• Similar crack paths to existing propagation results.

Outlook

• Further Studies on \mathcal{W}_G.
• Comparative study between material forces and **MCSC** in XFEM.